SACE 1 Chemistry Redox & Electrochemistry Test 2018 ANSWERS Name

1. Oxygen is the most electronegative **common** element, with only fluorine having a higher value. Determine the oxidation state for oxygen in the following substances. [5 marks]

- 2. Oxidation state represents the number of chemical bonds an atom can make with different elements in a compound.
 - (a) State the three rules arising from this definition of Oxidation State, including significant variations when appropriate: [6 marks]

	State the rule	Appropriate variations
Rule 1 for elements	All elements have oxídatíon state zero, 0	Monatomíc íon charge
Rule 2 for oxygen	Oxygen usually has oxídatíon state⁻2	• [−] 1 with Peroxides • ⁺ 2 with Fluorine
Rule 3 for hydrogen	Hydrogen has oxídatíon state †1 wíth non-metals	-1 when with metals and most metalloids

(b) Explain how the Oxidation State for all other elements are determined using these rules: Assign oxidation state for any elemental species, oxygen and hydrogen first, and THEN adjust OS of any remaining atoms so that total OS adds up to the overall ionic charge. [2marks]

3. Determine oxidation state of the following highlighted element Phosphorous: [4 marks]

Phosphine PH ₃	Phosphoric Acid H ₃ PO ₄	Phosphorous Acid H ₃ PO ₃	Phosphorous Hydride P_2H_4
H H			H H ** P H H H
oxidation P -3	oxidation P +5	oxidation P +3	oxidation P -2

4. State which of these reactions are Redox by including the Oxidation State of the **<u>underlined</u>** elements.

[5 marks]

(a)	$2H_2 \stackrel{-1}{\underline{\mathbf{\hat{O}}}}_2 \rightarrow \stackrel{0}{\underline{\mathbf{\hat{O}}}}_2 + 2H_2 \stackrel{-2}{\underline{\mathbf{\hat{O}}}}$	Redox
(b)	$K_2 \frac{\overset{+6}{\widehat{\mathbf{Cr}}}_2}{\overset{-2}{\widehat{\mathbf{Cr}}}_2} O_7 + 2K \frac{\overset{-2}{\widehat{\mathbf{O}}}}{\overset{-2}{\widehat{\mathbf{O}}}} H \rightarrow 2K_2 \frac{\overset{+6}{\widehat{\mathbf{Cr}}} O_4 + H_2 \frac{\overset{-2}{\widehat{\mathbf{O}}}}{\overset{-2}{\widehat{\mathbf{O}}}}$	Not Redox
(c)	$\frac{\overset{0}{\widetilde{\mathbf{Cu}}} + 4\mathrm{H} \overset{\mathbf{+5}}{\widetilde{\mathbf{N}}} 0_3 \rightarrow \frac{\overset{\mathbf{+2}}{\widetilde{\mathbf{Cu}}} (\overset{\mathbf{+5}}{\widetilde{\mathbf{N}}} 0_3)_2 + 2 \overset{\mathbf{+4}}{\widetilde{\mathbf{N}}} 0_2 + 2\mathrm{H}_2\mathrm{O}}{\widetilde{\mathbf{N}}}$	Redox
(d)	$\operatorname{Na}_{2} \frac{\overset{+2}{\widehat{\mathbf{S}}}}{\underline{\mathbf{S}}}_{2} O_{3} + 2\operatorname{H} \frac{\overset{-1}{\widehat{\mathbf{Cl}}}}{\underline{\widehat{\mathbf{Cl}}}} \rightarrow \frac{\overset{+4}{\widehat{\mathbf{S}}}}{\underline{\mathbf{S}}} O_{2} + \frac{\overset{0}{\widehat{\mathbf{S}}}}{\underline{\mathbf{S}}} + \operatorname{H}_{2}O + 2\operatorname{Na} \frac{\overset{-1}{\widehat{\mathbf{Cl}}}}{\underline{\widehat{\mathbf{Cl}}}}$	Redox
(e)	$\frac{\overset{+6}{\underline{Cr}}_{2}}{\underline{O}_{7}^{2-}} + 8HCl + 3H_{2} \underbrace{\overset{-1}{\underline{O}}}_{2} \rightarrow 2 \underbrace{\overset{+3}{\underline{Cr}}}_{2} Cl_{3} + 3 \underbrace{\overset{0}{\underline{O}}}_{2} + 7H_{2}O + 2Cl^{1-}$	Redox

5.	Complete the	Redox reactions	using the redox	conjugate pairs provided.	
----	--------------	------------------------	-----------------	---------------------------	--

[2 each = 10 marks]

	Conjugate pairs	Using ½-equation method to balance full redox reaction equation	
a)	Ca Ca ²⁺ with H ₂ O H ₂	$Ca \rightarrow Ca^{2+} + 2e^{-}$ $2H_2O + 2e^{-} \rightarrow H_2 + 2OH^{1-}$ $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	
b)	PbO Pb with $Br_2 BrO_3^{1-}$	$[Pb0 + 2H^{+} + 2e^{-} \rightarrow Pb + H_{2}0] \times 5$ Br ₂ + 6H ₂ 0 \rightarrow 2BrO ₃ ¹⁻ + 12H ⁺ + 10e ⁻ <u>5Pb0 + H_20 + Br_2 \rightarrow 5Pb + 2H^{+} + 2BrO_3^{1-}</u>	
c)	$Cr_2O_7^{2-} Cr^{3+}$ with $Fe^{2+} Fe^{3+}$	$\begin{array}{c} \operatorname{Cr}_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \rightarrow \ 2\operatorname{Cr}^{3+} + 7H_{2}O \\ \\ \hline & [\ \operatorname{Fe}^{2+} \rightarrow \ \operatorname{Fe}^{3+} + e^{-} \] \times 6 \\ \hline & \mathbf{Cr}_{2}O_{7}^{2-} + 14H^{+} + 6Fe^{2+} \rightarrow \ 2\operatorname{Cr}^{3+} + 7H_{2}O + 6Fe^{3+} \end{array}$	
d)	$ MnO_2 Mn_2O_3 with Fe2+ Fe3+ $	$ \begin{array}{c} 2MnO_{2} + 2H^{+} + 2e^{-} \rightarrow Mn_{2}O_{3} + H_{2}O \\ $	
e)	$C_2H_5OH CH_3COOH$ with $MnO_4^{1-} Mn^{2+}$	$\begin{bmatrix} C_{2}H_{5}OH + H_{2}O \rightarrow CH_{3}COOH + 4H^{+} + 4e^{-}] \times 5 \\ \\ \begin{bmatrix} MnO_{4}^{1-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O \end{bmatrix} \times 4 \\ \\ \hline 5C_{2}H_{5}OH + 12H^{+} + 4MnO_{4}^{1-} \rightarrow 5CH_{3}COOH + 11H_{2}O + 4Mn^{2+} \end{bmatrix}$	

6. Copper (Cu), palladium (Pd) and vanadium (V) are metals used in making alloys. Three displacement tests were carried out on these three metals M_(s) and their corresponding salts $M_{(aq)}^{n+}$ in solution. The results are summarised below:

- displaced by V, so that reactivity is $\frac{Cu}{Pd} < V$. \bullet shows that Cu is not displaced by Pd, so that Pd < Cu.
- Overall, Pd < Cu < V. (Alternatively, electronegativity values $\frac{Pd}{2.20}\chi > \frac{Cu}{1.90}\chi > \frac{V}{1.63}\chi$)

(b) Two half-cells for V | V²⁺ and Pd | Pd²⁺ are connected with a salt bridge soaked in potassium nitrate solution and a multimeter set to record DC voltages as shown opposite

- Anor (i) Indicate the direction of the external electron flow with an arrow on the diagram opposite. [1 mark]
- (ii) Complete the table below by referring to the (+) and (-) electrodes shown in the diagram opposite. [4 marks]

de 🦟		e
	Multi meter set to 5V DCV	
Vanadium	KNO _{3 (aq)} salt bridge	Palladium
V(NO ₃) _{2 (ag)}		$Pd(NO_3)_{2(aq)}$

solution

+ 2.1 V

Electrode $\frac{1}{2}$ -cell M | Mⁿ⁺ Redox Process Name Redox Process Name Electrode Name Sign at electrode (Reduction or oxidation) (Reduction or Oxidation) | (Cathode or Anode?) $Pd^{2+} + 2e^- \rightarrow Pd$ From Diagram $Pd^{2+} \mid Pd$ Cathode (+)Reduction $V \rightarrow V^{2+} + 2e^ V | V^{2+}$ Anode Oxídation (-)Write full redox Which displacement reaction **0**, **2**, **3** $V + Pd^{2+} \rightarrow V^{2+} + Pd$ (iii) equation for or **4** is represented by connecting these ¹/₂-reactions these two ½-cells? #2 [2 marks]

solution

(c) (i) The V | V²⁺ half-cell has a solution containing V²⁺_(aq) and NO¹⁻_{3(aq)} ions.

Which one of these ions becomes in excess in the solution as the redox reaction proceeds? [1 mark]

$V \rightarrow V^{2+} + 2e^-$ produces more V^{2+} to enter the solution. This makes V^{2+} in excess compared to NO_3^{1-}

(ii) The Pd $|Pd^{2+}$ half-cell has a solution containing $Pd^{2+}_{(aq)}$ and $NO^{1-}_{3(aq)}$ ions.

Which one of these ions becomes in excess in the solution as the redox reaction proceeds? [1 mark]

$Pd^{2+} + 2e^- \rightarrow Pd$ removes Pd^{2+} from the solution. This makes NO_3^{1-} in excess compared to Pd^{2+} .

(iii) The salt bridge contains mobile $K_{(aq)}^{1+}$ and $NO_{3(aq)}^{1-}$ ions.

State which half-cell each of these mobile ions move to as the redox reaction proceeds. [2 marks]

 $K_{(aq)}^{1+}$ moves to NO_3^{1-} excess at $\underbrace{Pd^{2+}|Pd}_{(+) \ cathode}$ and $NO_{3(aq)}^{1-}$ moves to V^{2+} excess at $\underbrace{V \mid V^{2+}}_{(-) \ anode}$

(d) The vanadium redox battery (VRB) uses vanadium salt solutions for both half cells:

$$VO_2^{1+} | VO^{2+} | V^{2+} | V^{3+}$$

These are separated by a plastic membrane (**II**) that allows aqueous ions to move between each half cell.

- (i) State the four oxidation states of vanadium in the VRB: $\overrightarrow{V} O_2^{1+} | \overrightarrow{\nabla} O_2^{2+} | \overrightarrow{\nabla} O_2^{2+} | \overrightarrow{\nabla} O_2^{3+}$
- (ii) The VRB is able to convert chemical energy to electrical energy as an electrochemical cell and can also use electrical energy to produce a chemical reaction as an electrolytic cell. Refer to the two diagrams below and identify which process is occurring in each. [2 marks]

[3 marks]