Student Worksheet: What drives plate tectonics?

POSSIBLE DRIVING MECHANISMS FOR PLATE MOTION

Mantle convection: Convection is driven by heat from the core and involves either the whole mantle or convections cells within the plastic asthenosphere. The upwelling in the convection cells occurs under the Earth's divergent plate boundaries, and cooler material sinks at the convergent boundaries. The lithosphere plates are dragged along by the horizontal flow of the asthenosphere like a conveyor belt.

Diagram showing mantle convection, ridge push and slab pull mechanisms

Ridge push: Hot buoyant mantle lifts and pushes the plates apart at mid-ocean ridges where magma solidifies to form new oceanic lithosphere. Gravity pulls the oceanic plates downhill from the ridges towards the deep ocean trenches (or downhill from uplifted continental rift zones like the East African Rift).

Slab pull: Relatively cool and dense oceanic plates (slabs) have negative buoyancy after subducting at ocean trenches and sink into the ductile, less dense asthenosphere, pulling the rest of the tectonic plate along behind it.

Empirical tests (based on observations only) to determine the dominant driving mechanism:

Mantle convection: plate speed should not be related to plate boundary types, and plate speeds should be similar either side of divergent boundaries if convection is symmetric (as presented in Figure 1).

Ridge push: plate speed should be related to the percentage of its boundary that is divergent.

Slab pull: plate speed should be related to the percentage of its boundary subducting under another plate.

Table 1. The relationship between 70 of a place boundary subducting of divergent and its speed.								
TECTONIC PLATE	AREA (km²)*	Boundary (km)	Boundary subducting (km)	% subducting	Boundary divergent (km)	% divergent	Average speed cm/yr	Direction
Pacific	103,300,000	46,456	16,311	35.1	15,110	32.5	7.5	WNW
North American	75,900,000	33,670	810	2.4	11,740	34.9	1.5	NW–-SW
Eurasian	67,800,000	44,150	1,990	4.5	10,630	24.1	2.9	NE–SW
African	61,300,000	40,560	1,960	4.8	20,790	51.3	2.7	NE
Antarctic	60,900,000	39,600	2,170	5.5	20,540	51.9	1.0	S–N
Australian	47,000,000	36,365	7,310	20.1	14,490	39.8	6.5	NNE
South American	43,600,000	33,380	1,890	5.7	8,660	25.9	1.3	N
Somali	16,700,000	20,410	0	0.0	11,820	57.9	2.9	NE
Nazca	15,600,000	19,300	6,500	33.7	7,480	38.8	6.7	E
Indian	11,900,000	17,010	1,490	8.8	3,530	20.8	5.4	NE
Philippine	5,500,000	11,260	4,300	38.2	2,223	19.7	6.8	WNW
Arabian	5,000,000	10,530	730	6.9	3,350	31.8	4.3	NE
Caribbean	3,300,000	9,070	0	0.0	130	1.4	2.1	NE
Cocos	2,900,000	7,920	2,790	35.2	3,980	50.3	8.9	NNE

					· · · · · · · · · · · · · · · · · · ·
1 2010 1 · 1 00 rolationchi	n notwoon % ot c	niato noundarv	/ CIINAIICTING (or aivergent	DOD DTI DOC
Table 1. The relationshi		plate boundary	Jubuucung	or unvergent	and its spece.

Data Sources:

Plate names and areas from <u>https://www.thoughtco.com/sizes-of-tectonic-or-lithospheric-plates-4090143</u> Accessed 12/07/17

Plate boundaries, % subducting and % divergent were measured on **Google Earth** using plate boundaries defined by the USGS Plate speeds and directions based on average movement of GPS stations within each plate from <u>http://sideshow.jpl.nasa.gov/post/series.html</u> Accessed 26/04/13

Plot the data on the graphs below. Tectonic plate speed and percentage of boundary subducting

Tactonia			
plate speed			
(cm/yr)			

% of plate boundary subducting

Tectonic plate speed and percentage of boundary diverging

Testerie			
plate speed			
(cm/yr)			

Questions:

% of plate boundary diverging

1. Based on this data and the empirical tests, what is the dominant driving mechanism for plate motion? Explain your answer by referring to the graphs.

2. Copy the data from Table 1 into an Excel or similar spreadsheet, and determine the correlation coefficients

between: % subducting and average plate speed _____

% divergent and average plate speed